If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4v^2+3v-1=0
a = 4; b = 3; c = -1;
Δ = b2-4ac
Δ = 32-4·4·(-1)
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-5}{2*4}=\frac{-8}{8} =-1 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+5}{2*4}=\frac{2}{8} =1/4 $
| 4v+3v-1=0 | | G(4)=2-x2 | | −7(x−3)−4=−39 | | 19+xx+11−3=−1 | | 2(w-8)=7w+9 | | 9/7=z | | 9c=7c+5 | | 3.96+0.02x=5 | | 3.98+0.02x=5 | | 0.02(198)+0.02x=5 | | (5x+4/5x−4)+(5x−4/5x+4)=13/6 | | .02=5/198+x | | 7x-2-3=8x-5-x | | -q+7=2 | | −7|5x−8|+14=14 | | 9x+6/12=1/2 | | 9x+6/12=14 | | (4-x)^2=5(2+x) | | x=-0.81/0.9 | | √20-3x=√5 | | 5x+1-20=5(5x-1) | | 2-r=-2+3(2+3r) | | 15=(7/2x-3) | | 4-r=-1 | | -6-v=-1 | | h+1=11 | | 3(m+4)=15 | | -3+n=3 | | 10-(14-6x)/4=2 | | 3u=8+2u | | -4-r=2 | | -1-x=5 |